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ABSTRACT
Smartphones frequently notify users about newly available
messages or other notifications. It can be very disruptive when
these notifications interrupt users while they are busy. Our
work here is based on the observation that people usually ex-
hibit different levels of busyness at different contexts. This
means that classifying users’ interruptibility as a binary status,
interruptible or not interruptible, is not sufficient to accurately
measure their availability towards smartphone interruptions.
In this paper, we propose, implement and evaluate a two-stage
hierarchical model to predict people’s interruptibility intensity.
Our work is the first to introduce personality traits into inter-
ruptibility prediction model, and we found that personality
data improves the prediction significantly. Our model boot-
straps the prediction with similar people’s data, and provides
a good initial prediction for users whose individual models
have not been trained on their own data yet. Overall prediction
accuracy of our model can reach 66.1%.
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INTRODUCTION
Smartphones frequently notify users about newly available
information such as incoming calls, messages, emails, and
notifications. It can be very disruptive when these notifica-
tions interrupt users while they are busy. Studies have shown
that inappropriate interruptions not only annoy users, but also
decrease their productivity [65] and affect their emotions and
social attribution [1]. Hence, it is important to understand and
select appropriate time and context to interrupt users.

Ideally, a smartphone notification management system should
be capable like a human secretary. Various studies [31, 21,
22, 73, 61] have been conducted focusing on the contextual
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information that affects user’s interruptibility, and the effects
of interruption content on interruptibility also have received
attention [19, 39, 54]. However, most of the previous works
focus on the binary classification of the interruptibility to no-
tifications, while recent work [50] found that only for 45%
of the scenarios binary classification is appropriate. In other
words, people’s interruptibility to notifications is distributed
among many levels. This means that classifying users’ inter-
ruptibility as a binary status, interruptible or not interruptible,
is not sufficient to accurately measure their availability towards
smartphone interruptions.

In this work, we conducted a field study to predict users’ in-
terruptibility intensity to mobile interruptions. By identifying
user’s context and interruption content, we propose a two-stage
hierarchical model to predict users’ interruptibility intensity.
In the first stage, our model predicts whether users will react
to mobile interruptions. If users do not react, they are indeed
uninterruptible and will not involve in the interruption. If they
react, our model further predicts how interruptible the users
are in the second stage based on the type of tasks they are
able to perform. Different tasks require different time and ef-
forts, knowing all the factors of a task is useful for predicting
people’s interruptibility.

One important advantage of building a hierarchical model is
the ability to collect additional feedback data from the users.
Several previous works have used only sensor data to predict
user’s interruptibility (whether a user would react to a noti-
fication) [61, 63]. Our first stage in the hierarchical model
applies a similar approach. However, many applications prefer
interacting further with users. This requires learning more
about user’s context and current state (e.g. their moods) to
predict their availability. Our second stage prediction serves
for this purpose on further predicting user’s interruptibility
intensity based on their feedback.

In this paper, we use tasks as an example to learn about the
extent of users’ interruptibility. The method we present can be
applied to other scenarios. For example, a mobile operating
system (OS) initiates interaction between users and applica-
tions. Based on the importance and attention demand of the
interaction [47], an OS can prioritize the interaction initiations
by knowing users’ fine-grained interruptibility levels.

We present the following four major contributions:

1) We propose a two-stage hierarchical interruptibility pre-
diction model. In the first stage, our model predicts (with
75% accuracy) whether a user will react to an interruption



or notification based on mobile sensor data and personal-
ity traits. If the user reacts, it further predicts the user’s
interruptibility intensity for various tasks (requiring user
involvement) in the second stage based on mobile sensor
data and user’s self-reported contextual information.

2) The evaluation results showed that our model can achieve
an overall accuracy of 66.1% for interruptibility intensity
prediction (with 60.9% mean accuracy).

3) We are the first to introduce people’s personality into
an interruptibility prediction model. On average, it im-
proves the major measures (accuracy, precision, recall and
F-measure) of tested classifiers over 10 percentage points
in the first stage.

4) Our model solves the initial prediction problem, that is,
how to predict when you do not have user data. To achieve
this, in the second stage, our model uses the data of people
who share similar personality with the user. Compared
to the models using all the data of other people [23, 61],
this reduces the training time significantly while maintains
comparable prediction accuracy.

As minor contributions, we implemented a smartphone plat-
form for this study, and we used a mobile social networking
application (Foursquare) checkins to infer users’ semantic
places. We collected over 5000 interruptibility records from
22 participants over four weeks.

RELATED WORK
Interruptions within task execution impact users in various
ways (e.g. emotion, productivity) and several studies have
been conducted to mitigate the impacts. Fogarty et al. [24]
suggested capturing task engagement to create reliable inter-
ruptibility prediction models. Iqbal et al. [37] leveraged the
task structure characteristics to predict the cost of interrup-
tions, however, it is usually difficult to know the task structure
in advance. Delivering interruptions at task breakpoints is
considered as effective to reduce the cost of interruptions [1,
38, 72, 32, 59, 60], as the workload decreases when reaching
task boundaries. Bailey et al. [5] found that disruption can be
largely mitigated by deferring notification to coarse boundaries
during task execution. Horvitz et al. [34] also found that defer-
ring notification could balance the information awareness and
the cost of interruption. Although deferring notifications could
reduce disruptiveness or cost of interruption, this approach
bears the risk of missing important time-sensitive notifications.

Context provides useful information when estimating oppor-
tune time to deliver interruptions. Hudson et al. [36] and
Fogarty et al. [22] found that simple sensors can provide the
context to construct interruptibility estimation model, which
can make robust estimates [23]. Horvitz et al. [33] utilized the
visual and acoustical information captured by microphones
and cameras of computers to infer the cost of interruption
(COI), and later they developed Busybody [35] to predict the
COI based on user’s environment. Mühlenbrock et al. [56]
employed various sensor data from PC, PDA and phone to
detect user’s availability and assist face-to-face interactions in
office environments. Begole et al. [6] presented a prototype

system, Lilsys, to infer user’s unavailability by sensing users’
actions and environment. Also, wearable sensors can be used
to provide useful data to make accurate interruptibility pre-
diction [52, 40]. Recently, Kim et al. [41] used sensor data
about drivers’ states and driving situation to infer the drivers’
interruptibility when they are driving.

All of the above works focus on the observed environments
(lab or office) and desktop notifications, however, this is differ-
ent from mobile use during people’s daily lives. With smart-
phones, people tend to receive more interruptions due to its
ubiquitous characteristics, and this sparks the research on in-
terruptibility in the field.

Phone calls are considered as one of the major interruption
sources. Ter Hofte [75] employed the ESM method to explore
the context that can be used to predict people’s availability
to a phone call. Böhmer et al. [8] allowed users to postpone
an incoming phone call and introduced a smaller notification
screen that reduced the annoyance perceived with interrup-
tions. Rosenthal et al. [66] used ESM to collect data and train
personalized models to learn when to silence the phone to
avoid embarrassing interruptions. Smith et al. [71] considered
dataset imbalance, error costs, user behaviors to recognize
disruptive incoming calls, and developed RingLearn [70] to
mitigate disruptive phone calls. Fisher et al. [20] built an
in-context application for smartphone to create personalized
interruptibility prediction model for phone calls. Although
they achieved high prediction accuracy (96.12%), similar to
other works [66, 71, 70], their model only predicts phone’s
ringer modes (on and off), which is a rough measurement of
interruptibility. Moreover, the ringer mode may not reflect
users’ actual interruptibility, for example, when they forget to
switch the mode when their interruptibility changes.

Mobile notifications are more pervasive and common than
phone calls. Among tons of notifications, selecting an oppor-
tune time to deliver them is critical to their reception. Ho et
al. [32] explored the perceived burden of mobile notifications
and found that the burden was reduced during the transitions
of two different physical activities, such as sitting to walking.
Fischer et al. [18] used mobile interaction as indicators of
opportune moments to deliver notifications, they found the in-
terruptions were responded more quickly after a user finished
an interaction with mobile phone, such as phone call, text
message. Pielot et al. [62] found that the interaction with noti-
fication center, the screen activity are strong predictors of the
responsiveness to instant messages, with such simple features,
their model predicts whether a message will be viewed within
a few minutes with 70.6% accuracy. Poppinga et al. [63] in-
vestigated the context factors’ effects on interruptibility, they
proposed a decision tree-based model to predict the opportune
time to deliver mobile notification with 77.85% accuracy. Pe-
jovic et al. [61] used a similar approach but with more features
obtained from ESM survey to determine different aspects of
interruptibility, including reaction presence, response time and
sentiment. Based on the work of Poppinga et al. [63], Sarker
et al. [67] used wearable sensor in addition to smartphone
sensors to collect data. Their model achieves an accuracy of
74.7% (against base accuracy 50%) in predicting opportune



time to deliver interruptions. Mehrotra et al. [54] showed that
by considering the notification content, the response time to
notifications can be predicted with 70% average sensitivity.

Although the results of above works on predicting appropri-
ate time to deliver notifications are promising, all of them
mainly focus on the binary classification of interruptibility.
However, Lopez et al. [50] found that for meetings, a binary
classification was appropriate only 45% of the time. Pielot et
al. [62] achieved the accuracy for two levels (binary) 70.6%
and for three levels 61.6%. Züger [81] et al. predicted inter-
ruptibility of software developers in five levels; their model
could achieve accuracy of 43.9% in the lab and 32.5% in the
field. In addition to a binary prediction, Fogarty et al. [22]
performed a 5-level interruptibility prediction. They achieved
the prediction accuracy of 47.6% and 51.5% by using Naive
Bayes and Decision Tree classifiers.

In our work, we conducted a field study towards understand-
ing and predicting people’s interruptibility intensity (levels)
to mobile interruptions. We propose a two-stage hierarchical
prediction model. In first stage, it predicts whether user is
available to react to a notification. If the user reacts to the
notification, it further predicts user’s interruptibility intensity
in second stage. In second stage, we take the ordering of the
interruptibility ratings into consideration. The overall predic-
tion accuracy can reach 66.1% (average 60.9%). Compared to
previous works [22, 81], this is very competitive. We are also
the first to take personality traits into interruptibility prediction
model, and we found that the personality data significantly im-
prove the prediction accuracy. For new users, our model uses
data of other users who share similar personality. This solves
the initial prediction problem of needing to train with the user
before the app is usable. Our approach significantly reduces
the training time of the model while maintains comparable
prediction accuracy for predictions in the first days.

METHOD
Our study design focuses on investigating participants’ inter-
ruptibility to mobile notifications in the field. We installed
a smartphone app to the participants’ phones to probe them
during their daily lives.

Participants
We recruited participants using flyers, email lists and online
advertisements. We required the participants to be at least 18
years old and active Android users. All the participants were
compensated with a $30 gift card for completing the whole
study, and they were enrolled in a raffle for two $50 gift cards.
The study was approved by the Rutgers University IRB.

In total, we recruited 33 participants. Four participants with-
drew during the study, and another seven participants were
excluded from our analysis, as their survey response rates were
less than 20%. This reduced our sample to 22 participants, in
which we focus for the remainder of the paper.

Our participants’ ages ranged from 18 to 27 (mean = 21.63,
SD = 2.85, Mdn = 21); 9 participants were female and 20 were
male. The participants’ Android experiences ranged from one
month to six years.

Participant Number
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Figure 1. Answered and unanswered surveys of each participant. P8 re-
ceived most surveys (297), while P1 only received 121 surveys. Because
participants have different behavior and phone usage patterns, they re-
ceived different numbers of surveys. P6 answered 85.1% of all the sur-
veys, while P5 only answered 20%.

The field study was carried out for four weeks with each
participant. Each of the participants received roughly 8 - 10
survey notifications everyday. In total, 5039 surveys were
sent out, while 2804 (55.6%) were answered. Acceptable
response rates considered in previous studies range from 11%
to 60% [30, 13, 46]. Therefore, our data was valid for analysis.
The number of completed surveys for interruptibility level 1
to 5 are 280, 284, 1047, 299 and 894. Figure 1 shows the
distribution of answered and unanswered surveys.

Apparatus
We developed an Android app for Android version 4.4.2 while
ensuring compatibility for all the later versions. The app was
used to initiate interruptions via a popup survey, and capture
the user’s context and record self-reported interruptibility level
and notification information. Our app periodically uploaded
the collected data to our remote server automatically via a
background service. The data was uploaded only when the
phone was connected to a WiFi network. This avoided the
potential cellular data cost for the participants.

Procedure
To investigate the interruptibility of participants, we used Eco-
logical Momentary Assessment (EMA) in our field study.
EMA [69] is a research method that is used to collect self-
reports of participants’ behaviors, physiological and psycho-
logical states during their daily lives. The data collected in
our study includes the participants’ self-reports data from the
EMA surveys and various sensor data, as described below.

During the study, participants were asked to come to the lab
twice, once at the beginning of the study and once at the end
of the study. During the study, the participants performed their
daily activities as usual and responded to the app prompts.

In the first visit, we gave a brief introduction about the study.
Then participants read and signed the consent form. The
participants were also asked usual demographic questions.

After the interview, we installed our app to participants’
phones. While we were installing the app, participants were
asked to take a personality test-Mini IPIP [16], a short measure



of the Big Five personality traits (Extroversion, Agreeableness,
Conscientiousness, Neuroticism and Openness) [12].

Once the app was installed, it generated a dialog that noti-
fied the participant to take the survey when triggering condi-
tions were satisfied. The prompts were triggered by the state
changes of participants [32, 59, 60]. We used the Google
Activity Recognition API [27] to detect participant’s states
in the app. Table 1 lists the states we included: in vehicle,
on bicycle, running, still, tilting, unknown, and walking. Un-
known state meant that the API was not able to categorize the
state. A survey notification would be slated to pop up when
two consecutive states were different.

Whenever a survey notification popped up, a new record was
created in the database. The record was updated when partici-
pants responded to the notification. After participants finished
the surveys, all the survey answers and timestamps would be
inserted to the database.

If a participant did not respond to the notification in ten sec-
onds, the notification was pushed into the system notification
bar. It remained there until the participant clicked it and com-
pleted the survey, or it would be replaced when a new survey
popped up. The app also provided an option to cancel the sur-
vey notifications when participants were not available at the
moment. In this case, the app only updated the response time
for that survey record in the database. This option was only
available before the notification was pushed into notification
bar. Additionally, the survey notifications were only allowed
to pop up between 8:00 AM and 10:00 PM [45]. To reduce the
workload of the participants, the time interval between two
surveys was at least one and half hours. This ensured that the
survey prompted no more than ten times a day [30].

After four weeks of study, the participants were requested to
come back for an exit interview and debriefing. We uninstalled
the app for them and destroyed the associated data on the
phone. Meanwhile, participants were asked to finish a short
survey about the experience of the study, and other thoughts
of the study.

Collected Data
Table 1 gives a summary of all the data types we collected
during the study: time, current and previous state, location,
mood (BMIS scale), interruptibility level, current transporta-
tion method (e.g. by car, by air, walking and so on), current
activity, and questions related to tasks they could perform.

We sampled the participants’ current mood in the survey using
a brief mood introspection scale (BMIS) measurement [53].
Previous works obtained participants’ mood by either directly
asking them how happy or sad they are [61, 67], or using
an ECG sensor to measure the mental state [81, 67]. These
approaches can be of limited validity for measuring actual
mood or not feasible for mobile users during their daily lives
over an extended time. BMIS is widely used to measure
mood with a pleasant-unpleasant scale, which uses a four-
point Likert scale for each adjective.

Previous work has indicated that people’s responsiveness
to notifications is high when they are changing their loca-

Data Type Description
Time *, + Survey pop-up time, reaction time and survey

completion time.
Current and previous
state *, +

In vehicle, on bicycle, running, still, tilting, un-
known, walking.

Location *, + Latitude and longitude, Foursquare checkins
grouped into 10 categories.

Personality traits *, + Extroversion, agreeableness, conscientiousness,
neuroticism and openness.

Mood+ Using BMIS survey, scaled from unpleasant to
pleasant.

Transportation method
+

By car, by air, by bike, by bus, by train, by subway,
by boat, running, walking.

Current activity+ Doing exercise, having a meal, on the phone,
playing games, studying, taking a rest, talk-
ing, watching video, working, writing/checking
emails, bored, others.

Who would you like
to do a task for (task
sender)? (Select one
or more) +

1) Immediate family members 2) Extended family
members 3) People you are close to 4) People you
live with 5) People you work with 6) People you
do hobbies/activities with 7) Strangers [78]

What type of tasks
would you like to do?
(Select one or more) +

Educational activities, help colleagues, help fam-
ily members, help strangers, household activities,
leisure and sports, organizational, civic, and reli-
gious activities, phone calls and mails, purchase
goods, others (Time Use Survey [58]).

Preferred task duration
(slider) +

1 minute to 120 minutes [58]

Interruptibility level + 1) Highly interruptible 2) Interruptible 3) Neutral
4) Uninterruptible 5) Highly uninterruptible).

Table 1. Data types used to model interruptibility. The time, current and
previous state, and location were recorded automatically by the study
app, and the rest were reported by the participants with the pop up sur-
veys. Participants could select more than one option for question "who
would you like to do a task for?" and "what type of tasks would you like
to do?". The first stage of our model uses all the features marked with *,
and the second stage of our model uses all of the features marked with +.

tions [43], and people’s interruptibility is correlated to the
semantic places [67, 54]. Our study app collected the GPS lo-
cation every five minutes. In addition, we used the Foursquare
API [25] in our app towards obtaining uniform semantic names
for the places the participants would go. Based on their cur-
rent location, participants were asked to confirm the place
they were currently at. If they were at a new place, they were
asked to check-in at this place. Our app provided the check
in function via the Foursquare API, the participants simply
selected the venues from the list of places to check in when
taking the survey. After the study, we manually categorized
the foursquare places into 10 categories: entertainment, health
and medical, home, professional, church, restaurant, shopping,
transportation, work and others [7, 79, 49].

Participants were asked to rate their interruptibility intensity.
We used a five-point Likert scale to record the interruptibility
intensity levels as: highly interruptible (1), interruptible (2),
neutral (3), uninterruptible (4), and highly uninterruptible (5).

People’s interruptibility can be influenced by the interruption
time [1] and also by the content and context of the interrup-
tion [10, 19, 54]. Therefore, we predict whether people will
react to mobile notifications and also want to predict the extent
of their availability and busyness. Towards this end, we asked
whether participants would be able to perform some tasks.
During the survey, if participants did not want to take tasks at



Figure 2. The overview of the two-stage hierarchical prediction model.
The model first predicts whether a user is available to react to a notifica-
tion, as shown in the left dashed box. If the user reacted to a notification,
the model further predicts the user’s interruptibility intensity for vari-
ous tasks, as shown in the right dashed box. Otherwise, it will not allow
disturbing the user. Most of previous works only focus on the first level
(left dashed box) of the proposed model.

the moment, they did not have to do questions related to tasks.
Otherwise, they were asked to answer whose task and what
task they would like to perform, and the time they could spend
on the task.

The whose task question asks about the task sender. The
what task asks about the task content. We asked participants
for whom they would be willing to do the task for because
interpersonal relationships could affect how interruptions are
perceived [29, 54]. We wanted to cover common activities
that people do during their daily lives and used the American
Time Use Survey [58] to find activities where and how people
spend time. These common activities, listed in Table 1 can
reflect people’s availability. The time could be chosen from 1
to 120 minutes.

The task content in our survey can be mapped into the no-
tification content from various applications, especially for
crowdsourcing. For example, Chegg [9] app provides a plat-
form for education tutoring and problem solving. Airtasker [3]
app provides a platform for helping with chores, gathering ac-
tivities, and errands such as cleaning, delivery, playing sports,
and party planning. There are also web-based crowdsourcing
systems involving physical activities and tasks, for example,
Pick-A-Crowd [14], and other commercial apps for mobile
on-demand workforce [74].

HIERARCHICAL PERSONALITY-DEPENDENT
PREDICTION MODEL
In this section, we motivate and describe our hierarchical
interruptibility prediction model.

Turner et al. [77] asked if there “could [be] a hybrid approach
using personal and aggregated data reduce the training require-
ments for new users?” Our approach uses this simple idea, and
we have implemented and evaluated its effectiveness. Further,
we hypothesized that people’s availability or busyness can also
be related to potential tasks they could perform, in addition to
other context and mental states. These ideas led us to build a
model for predicting mobile users’ interruptibility intensity.

Figure 2 gives a high-level overview of our two-stage hierar-
chical prediction model. We believe this approach elegantly

solves the prediction problem. In the first stage, our model
predicts whether a user is available to react to a notification.
When a user reacts to a notification, our model further predicts
what participants’ interruptibility intensity is in the second
stage. When the user does not react to a notification, they
are classified as uninterruptible. This is also an important
approach in itself.

Our first stage classification distinguishes situations when
users are completely unavailable no matter what the interrup-
tions are. In this stage, our model utilizes the sensor data
to predict whether users present any reaction. In our study,
we label situations in which participants do not complete our
surveys as completely unavailable or no reaction. These cases
mostly indicate bad moments to send interruptions, as users
do not respond whether they miss them or ignore intention-
ally. On the other hand, the study would have less validity if
we would ignore unresponded surveys as they also indicate
unavailable situations. We label no response as unavailable in
this stage to accommodate above tradeoffs.

Our second stage further predicts users’ interruptibility in-
tensity by using additional information provided when they
interact with the interruptions, for example, mood. Such in-
formation is not available in the first stage. We ask the par-
ticipants to report their task performing preferences at this
moment in the survey. We use tasks to model the interruption
content as task performing is a common example that reflects
users’ availability. It also acts as an example of users interact-
ing with apps and providing additional information to assist
on prediction. Participants need to determine whether or not
they are available for listed tasks in Table 1. They could also
just skip this part. This design has the advantage of evaluating
multiple tasks at once compared to a single task prompt for a
specific person.

The first step applies machine learning algorithms for a tra-
ditional binary classification of interruptibility. This is es-
tablished by the sensor data and the personality test prior to
installing the app. Thus, no self-reports beyond the personality
test are used at this stage. The second stage is implemented
with regression models, and is only applicable when the par-
ticipant reacted to the pop up survey notification during the
study. We used Weka for building the model and evaluating
the classifiers and the regression models [28].

First Stage: Reaction Prediction
In this stage, we predict whether the user is available at all or
completely busy. This is based on whether the user responded
to the pop survey in our study or not. These reactions are
used as prediction labels. For each survey record, we labeled
it as Reaction if it was answered, otherwise, we labeled it as
Completely Unavailable. No survey data is otherwise used in
this stage. The prediction is based on the context information
collected by the smartphone sensors, and users’ personality
traits. The contextual information includes weekend indicator,
day of week, time of day, location, user’s previous state and
current state. User’s personality traits include extroversion,
agreeableness, openness, conscientiousness and neuroticism.
Personality traits were obtained from the personality test when
participants consented to join our study during their first visit.



The data used for classification has both numerical and cat-
egorical values. It is important to consider what types of
classifiers would be able to perform well on such data since
it is not obvious without testing them. SVM with nonlinear
kernel functions (e.g. RBF) and tree based classifiers perform
well and are generally robust on such kind of data. The at-
tributes of our data may not be independent, examples of such
data includes time and location. Domingos and Pazzani [15]
showed that Bayesian classifiers can be used on such data and
can achieve good performance. Additionally, tree, rule, and
Bayesian based classifiers are widely adopted in the domain of
interruptibility prediction, such as Decision Tree, SVM, and
Naive Bayes [77].

Based on these considerations, we built the first stage of the
model by using different classifiers: Naive Bayes, Bayesian
Network, SVM and Decision Tree. We evaluated the model
by using a 10-fold cross validation [42]. We used 90% of the
data as training data, and left 10% of the data as testing data
and the results are averaged over ten runs.

Second Stage: Interruptibility Intensity Prediction
After the first stage, when the model predicts the users have
reacted to the notifications, the model further predicts their
interruptibility intensity.

Prediction models, including interruptibility prediction specif-
ically, can suffer from the problem that they cannot accurately
predict when there is not enough training data [61, 77]. To
solve this problem, we take advantage of the personality data
in this stage. Studies have shown that personality has strong
connection with human behaviors, for example, personality
affects the task completion time [51], preferences and inter-
ests [76, 48, 17]. Further, personality traits influence the time
people take to even view a notification and how disruptive
notifications are perceived [55], which demonstrates the poten-
tial to consider personality in interruptibility prediction model.
In our model, we utilize the data of people who share similar
personality with the user and user’s personal data to predict
users’ interruptibility intensity.

The second stage of our model is a constraint regression model.
It consists of two components: the prediction from the data
of people who share similar personality with the current user,
and the prediction from user’s personal data. The weighted
combination of the above two components determines the
interruptibility intensity. Equation (1) shows the model.

Interruptibility_intensity = w1 f (Sim_People_Data)
+w2 f (Personal_Data)

s.t. w1 +w2 = 1,w1 � 0,w2 � 0
(1)

where Sim_People_Data is the data of the people who share
similar personality traits with the current user, Personal_Data
is the data of the current user, and w1 and w2 are the weights
of predictions from people who share similar personality with
the user and user’s personal data. Function f refers to re-
gression models, where interruptibility intensity (levels) is
a dependent variable and contextual information (time, loca-
tion, state changes, transition state, current activity, mood) and

task information (type of task, whose task, task duration) are
independent variables.

For function f , we evaluated four different regression mod-
els: Linear regression, Additive regression [26], M5P [64]
and k-Nearest Neighbors [4]. We used the Linear regression
algorithm as a naive baseline. Additive regression treats the
dependent variable as the sum of unknown functions of the
independent variables. M5P is a model tree learner, which
means it is a decision tree where each leaf is a regression
model. M5P is considered good for categorical and numeric
variables as in our case. k–Nearest–Neighbor algorithm (called
IBk [2] in Weka) is a non-parametric regression method. It is
robust to noisy data and requires no assumption of the data,
and also suitable for low-dimensional data.

To obtain the data of people with similar personality, we can ex-
tract a group of people from the data pool with the knowledge
of the personality of all participants, as shown in equation (2).

Sim_People = f0(personality_o f _cur_user) (2)

where Sim_People means the people who share similar per-
sonality with the current user, personality_o f _cur_user is the
personality of the current user, f0 refers to the similarity mea-
surement of the personality. In our experiment, we employed
the k-nearest-neighbor algorithm, and the distance function
we used is Euclidian distance based on Big-Five personality
traits, as shown in equation (3).

d(pi, p j) =
5

Â
k=1

|p(i,tk)� p( j,tk)|
2 (3)

where pi is i’th person’s personality, p j is j’th person’s per-
sonality, p(i,tk) is the k’th personality trait of i’th person, p( j,tk)
is the k’th personality trait of j’th person.

As equation (1) shows, people’s interruptibility intensity can
be inferred from their own interruptibility history and the
history of people who have similar personality to them. We
need to guarantee that both w1 and w2 are non-negative, and
the sum of them is 1 in that the range of the interruptibility
intensity is from 1 to 5. Clearly, w1 is 1 and w2 is 0 at the
beginning since we do not have any data about the current
user, we can only rely on the data of the people who share
similar personality with current user. When we have data of
the current user, that personal data starts playing a role in the
prediction. When that happens, w2 is set above zero. We note
that both w1 and w2 are not static or preset, they are trained
from the data.

RESULTS: STATISTICAL INFERENCE
In this section, we use Bayesian data analysis towards under-
standing how context factors and task related factors affect in-
terruptibility. We consider participant’s interruptibility ratings
as an ordinal predicted variable, and use a Bayesian approach
to model it with an underlying continuous variable [44]. We as-
sume normal distribution for the underlying continuous value
thus the interruptibility ratings are generated by the thresh-
olded cumulative-normal model. For all the tests, we use 95%
highest density interval (HDI), set the limit of the region of



practical equivalence (ROPE) on difference of means as (−0.2,
0.2), the limit of the ROPE on effect size as (−0.1, 0.1). These
limits and settings are conventionally used in Bayesian data
analysis [44]. We treat the categorical variable (location, activ-
ity, relations) as a nominal variable, and treat the continuous
variable (mood, duration) as a numeric variable.

The more pleasant, the more interruptible: We model the
mean (µ) of the underlying continuous variable as a linear
regression of the mood scores:

µ = b0 +b1 ⇥Mood

Marginal posterior distribution on b1 (slope of the linear
model) shows that the mode of b1 is −0.065 with 95% HDI
from −0.0755 to −0.0553. This indicates that the mean inter-
ruptibility rating decreases when mood score increases. In
other words, participants were more interruptible when they
were more pleasant (interruptibility rating 1 means highly in-
terruptible, 5 means highly uninterruptible. The higher the
mood score, the more pleasant the person is).

Interruptibility Differs at Different Places: We extracted
five place categories that were commonly visited by most
participants as: home, work, entertainment, transportation and
shopping places. We examined the posterior distribution of
underlying variable means at different places and the credible
differences between means at different places.

The posterior distribution of underlying means at different
places shows that participants did not want to be interrupted at
shopping places with mode = 4.41. The posterior distribution
on differences in the underlying means between shopping and
entertainment place shows that the mean difference has a 95%
HDI (−1.29, −0.226) excluding zero, and excluding the ROPE
from −0.2 to 0.2 with mode = −0.708. The posterior distri-
bution on the effect size of the mean differences has a 95%
HDI (−0.621, −0.115) excluding a ROPE from −0.1 to 0.1,
with mode = −0.369. This indicates that participants were less
interruptible at shopping places than at entertainment places.
Similarly, we found that participants are less interruptible at
work places than at entertainment places, with 95% HDI of
mean difference from −0.746 to −0.232, with mode = −0.475,
and 95% HDI of effect size of mean differences from −0.432
to −0.13, with mode = −0.277.

We also found a few participants visited healthcare and medi-
cal facilities, and they were highly interruptible at such places
(interruptibility mean = 1.59).

Interruptibility Differs with Different Activities: Table 1
lists all current activity types. The posterior distribution of un-
derlying means for different activities shows that participants
were most uninterruptible with mode = 4.36 when participants
were studying, they were most interruptible when they were
using the phone, with mode = 2.88. The posterior distribution
on differences in the underlying means between exercising
and other activities (talking, on the phone, gaming, watch
TV/video, email, and bored) shows that the difference ex-
cludes 0.0 with 95% HDI from −2.11 to −0.26 with mode =
−1.04, which completely excludes the ROPE from −0.2 to 0.2.
The posterior distribution on effect size of mean differences

has a 95% HDI (−0.872, −0.128) with mode = −0.506, exclud-
ing the ROPE from −0.1 to 0.1. Similarly, participants were
less interruptible when they were they were studying than on
the phone, with 95% HDI of mean difference from 1.22 to
1.75 with mode = 1.49, and 95% HDI of effect size of mean
differences from 0.777 to 1.12 with mode = 0.936.

Personal Relations Influence Interruptibility: The pos-
terior distribution on differences in the underlying means
between different relations shows that the mean difference
between stranger and other relations has a 95% HDI from
1.33 to 3.64 with mode = 2.28, which completely excludes
the ROPE (−0.2, 0.2). The posterior distribution on effect
size of mean differences also completely excludes the ROPE
(−0.1 to 0.1) with 95% HDI from 0.394 to 0.823, mode = 0.59.
This indicates that participants were more interruptible when
interrupted by people they know or close to than strangers.

Short Interruptions Make People More Interruptible:
We model the mean (µ) of the underlying continuous vari-
able as a linear regression of the interruption duration:

µ = b0 +b1 ⇥Duration

Marginal posterior distribution on b1 (slope of the linear
model) shows that the mode of b1 is 0.0313 with 95% HDI
from 0.0295 to 0.0327. This indicates that the mean interrupt-
ibility rating increases when interruption duration increases.
In other words, participants became less interruptible when the
interruption took longer time. (Interruptibility rating 1 means
highly interruptible, 5 means highly uninterruptible).

RESULTS: PREDICTION EVALUATION
In this section, we present the evaluation results of our two-
stage hierarchical model for interruptibility prediction.

First Stage: Predicting Reaction to Interruption
In this stage, we predict whether the participants react to the
survey prompts. We used Naive Bayes, Bayesian Net, SVM
and Decision Tree for performance comparisons.

Table 2 shows that SVM and Decision Tree outperform the
other three classifiers; they can achieve prediction accuracy
of 75.0%. SVM achieves better recall (76%) and Decision
Tree achieves better precision (78%) and F-measure (62%).
Accuracy is the ratio of correct predictions to all the predic-
tions. Due to accuracy paradox [80], accuracy alone usually
is not enough to measure the performance of a classifier. For
example, a classifier with 95% accuracy is not useful if 95%
of notifications are not answered and the 5% that are answered
are misclassified. Therefore, we also reported precision, recall
and F-measure. Precision is the ratio that true positive predic-
tions to all the predicted positive predictions, it measures the
exactness of the classifier. Recall, also called sensitivity, is the
ratio of number of true positive predictions to the number of
all positive class values in the data. It measures the complete-
ness of the classifier. F-measure is the weighted average of the
precision and recall, which measures the balance between the
precision and recall.

Table 2 shows that the prediction result is improved on average
over 10 percentage points with all of the important metrics



Classifier Accuracy Precision Recall F-Measure

Naive Bayes 0.66*
0.58

0.66*
0.59

0.69*
0.64

0.68*
0.61

Bayesian Net 0.72*
0.58

0.73*
0.59

0.73*
0.64

0.73*
0.62

SVM 0.75*
0.60

0.75*
0.61

0.78*
0.59

0.76*
0.60

Decision Tree 0.75*
0.60

0.76*
0.60

0.76*
0.60

0.76*
0.56

Baseline 0.56*
0.56

0.31*
0.31

0.56*
0.56

0.40*
0.40

Table 2. First stage prediction results of different classifiers with (*
marked) and without personality traits. Both SVM and Decision Tree
with personality traits can achieve 75% accuracy. The recall of SVM is
slightly higher than Decision Tree, and the precision of Decision tree is
better than SVM. The prediction results dropped largely when person-
ality traits were not included. On average, all the important metrics of
the classifiers dropped over 10 percentage points when we did not in-
clude personality. Baseline is a naive classifier that simply predicts the
majority class in the dataset without considering the features.

Classifier NB BN SVM DT
FPR 0.342 0.28 0.249 0.248
FNR 0.336 0.272 0.249 0.241

Table 3. False positive rate (FPR) and false negative rate (FNR) of differ-
ent classifiers (NB: Naive Bayes, BN: Bayesian Net, DT: Decision Tree)
for reaction prediction. DT and SVM have roughly the lowest FPR and
FNR among the tested classifiers. Given the high accuracy, recall, preci-
sion and F-measure of Decision Tree and SVM, they are the best classi-
fiers to predict the first stage reaction to a notification.

by including personality traits as features. To find the effect
of personality traits on the prediction, we re-evaluated all the
classifiers by removing the personality traits from the data.
On average, the prediction accuracy, precision, recall and F-
measure dropped by 13.8, 15.8, 11.2 and 12.6 percentage
points. Personality indeed affects users behavior and knowing
it can assist on how and when to interrupt users.

Table 2 shows that classifiers without personality traits per-
form only slightly better than a baseline classifier that simply
predicts the majority class in the dataset without considering
the features. In our case, 55.6% survey notifications were
answered and 44.4% were not. The answered survey is the
majority class. Thus, the prediction accuracy of the baseline
classifier is 55.6%. If we do not consider personality traits,
the accuracies of the tested classifiers are around 60%.

Table 3 shows the false positive and false negative rates of
the tested classifiers. Decision Tree and SVM have roughly
the lowest rates and they both had high prediction accuracy,
precision, recall and F-measure.

Second Stage: Predicting Interruptibility Intensity
In this stage, our model predicts users’ interruptibility intensity
if users reacted to the interruptions. The interruptibility inten-
sity is based on users’s self-reports, it ranges from 1 (highly
interruptible) to 5 (highly uninterruptible).

Figure 3 shows the results for predicting interruptibility inten-
sity and that the Additive regression performs the best with an
average prediction accuracy of 67.2%. We trained the model
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Figure 3. The prediction accuracy of model by using different regres-
sion algorithms and number of nearest neighbors k = 5. The predic-
tion accuracy of different regression algorithms is increasing along with
time. Our model using Additive regression performs the best in the ini-
tial stage, the accuracy of day 0 is 41.0%. On the average, Additive
regression also achieves the best accuracy of 67.2%. The model using
Linear regression performs the worst, as we cannot find a linear relation
between the interruptibility and the independent variables.

by using the first N days’ data of a user and the data of people
who have similar personality with the user. Then we tested
it by using the data of the user since day N+1. For example,
the prediction in day 0 is for the initial stage when there is no
data collected from the current user yet. At day 0, Additive
regression algorithm achieves the best prediction accuracy.
After about 16 days, the average accuracy tends to stabilize
around 75%. Linear regression performs the worse across
the whole period. IBk and M5P algorithms perform similarly,
the average accuracy is around 60% for the first 25 days, and
increases to 70% after that.

After comparing the performance of our model with all pos-
sible combinations of different k values (number of nearest
neighbors) and different regression algorithms, we found that
our model performs best when using Additive regression algo-
rithm with k value of 5. Also, our model has the best prediction
accuracy, 41.0%, for the initial prediction (day 0) when k = 5.

Figure 3 shows that the prediction accuracy of our model in-
creases rapidly once we receive data from users. For example,
the prediction accuracy can reach 56.7% after one day.

Figure 4 shows how the weight of prediction from current
user (w2) and the weight of prediction from people who have
similar personality (w1) change over time. Roughly on the
fourth day, w2 outweighs w1. The prediction from user’s own
data is more important than the prediction from people have
similar personality with the current user since day 5. After
about 20 days, w1 and w2 stabilize around 0.25 and 0.75.

Figure 5 shows that recall, precision and F-measure are in-
creasing along with the data collection when using Additive
regression algorithm and k = 5. After roughly 21 days, the
recall, precision and F-measure of the model stabilize around
65%. The second stage of the model can achieve relatively ex-
act and complete predictions. When we tested if the prediction
was correct or not, we translated the problem to classifica-
tion. Therefore, we reported these major measures (accuracy,
precision, recall and F-measure) of a classifier.
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Figure 4. The weight of prediction from current user (w2) and the weight
of prediction from people having similar personality with current user
(w1) change over time when using Additive regression and k = 5. Af-
ter about 4 days, w2 outweighs w1. That is the prediction from current
user’s own data is more important than the prediction from similar peo-
ple since day 5. After about 20 days, w1 and w2 stabilize around 0.25
and 0.75. The prediction from user’s own data contributes about 75%
to the final intensity prediction, while the prediction from similar people
contributes 25% to the final prediction.
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Figure 5. The changes of recall, precision and F-measure of second stage
prediction over time when using Additive regression and k = 5. Recall,
precision and F-measure are gradually increasing along with data collec-
tion. After about 20 days, all three metrics tend to be stable at 65%.

Root mean square error (RMSE) is one of the important met-
rics to measure regression models. It measures how close the
predicted values to the observed values. Lower RMSE means
better prediction. As our second stage is a regression model,
we also use RMSE to evaluate how accurately the second stage
can predict the interruptibility intensity.

Figure 6 shows that root mean square errors (RMSE) of the
second stage of our model decrease over the time when using
Additive regression algorithm and k = 5. At the initial stage
when there is no data of the user, both RMSEs of training data
and testing data are around 0.9. When we have more data of
the user, RMSEs are gradually decreasing. That means our
model fits the data better and predicts the interruptibility more
accurately when we have more data of the user. After about
20 days, RMSEs of training data and testing data slowing
approaches to 0.4 and 0.5. That shows that on average the
predicted interruptibility intensity is less than one level apart
from the actual level.
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Figure 6. Root mean square error (RMSE) changes over time when us-
ing Additive regression algorithm and k = 5. Along with the data collec-
tion, RMSEs of training data and testing data are gradually deceasing.
When having more data, the model can fit better to the training data
and also make better prediction. After about 20 days, RMSEs of train-
ing data and testing data tend to stabilize around 0.4 and 0.5.

Overall Prediction Accuracy of the Model
The overall prediction accuracy is the ratio of correct predic-
tions to all the predictions. Our model is a two-stage hierar-
chical prediction model. To calculate the overall prediction
accuracy, we need to consider these two stages together:

Overall_accuracy = p(corr_pred)
= p(corr_pred,reacted)+ p(corr_pred,not_reacted)
= p(corr_pred|reacted)p(reacted)
+ p(corr_pre|not_reacted)p(not_reacted)

(4)

Where corr_pred means correct predictions, reacted and
not_reacted mean participant reacted to the interruption and
did not react to the interruptions.

Equation 4 shows that the overall correct prediction consists of
two parts: the correct prediction that participants did not react
to notifications and the correct prediction when participants
reacted to the notifications.

Our model achieves prediction accuracy of 75% in the first
stage, and can achieve prediction accuracy of 78.7%, with an
average of 66.2% in second stage. According to equation 4,
the overall accuracy of our model can reach 66.1%, and on
average it is 60.9%.

DISCUSSION
A traditional binary classification of users’ interruptibility can-
not predict the extent of users’ availability and busyness. We
solved this problem by proposing a two-stage hierarchical
model, and our model can accurately predict users’ interrupt-
ibility intensity. This is very useful for various applications.
We introduced and took advantage of personality traits. We
discuss the major results and findings below.

We found that utilizing the Big Five personality traits signifi-
cantly improved the first stage prediction. On average, all the
major measures (accuracy, precision, recall and F-measure) of
the tested classifiers increased 10 percentage points when the
personality traits were included as features. We believe this is
because people who have similar personality traits can behave



similarly under similar context. For example, people who are
more extroverted can be more likely to react to notifications.

One major implication of our finding of the personality traits
is that we could use it to prime the second stage prediction.
In the second stage, when we have no data of a user in the
beginning, our model only uses the data of similar people to
predict the interruptibility intensity. The result shows that in
this case our model can have a prediction with accuracy over
40%. This is a significant result. When we have more data of
the user, the prediction relies more on the user’s personal data.
After day four, the weight of the prediction from personal
data outweighs the weight of prediction from similar people.
After roughly 20 days, the prediction weight of personal data
stabilizes around 0.75, while the prediction weight of data of
similar people stabilizes around 0.25.

Based on how the weights change, the prediction power of
people sharing similar personality traits is reduced over time.
However, they still have some significance in the final predic-
tion. This could be because when users receive new notifica-
tions that never seen before or change their behavioral pattern,
the model cannot make an accurate prediction only based on
the users’ own data. In this case, the data used for prediction
from the people who have similar personality traits would take
effect. Indeed, people usually receive more notifications from
already installed apps or messages from known people, and
receive less notifications from new apps or strangers.

Personality traits can also be widely used in various applica-
tions. Personality traits can be obtained by asking users to
take a short personality test after they install apps. With the
acquisition of people’s personality traits, systems can build a
generic model for people sharing similar personality. For new
users, we can use the model built on people sharing similar
personality with them to make predictions.

Our results show that when people are in a pleasant mood,
they are likely to be more interruptible than in a unpleas-
ant mood. Currently smartphones cannot directly infer users
mood, however, it may be possible to infer this from how they
are interacting with their smartphones (e.g. finger stroke [68],
motion gestures [11]) or from other sensors [57]. This presents
an interesting avenue for further research.

We found that users’ interruptibility varied among physical
places. To our surprise, shopping places were found as the
most uninterruptible place. A few participants were found
highly interruptible at locations such as healthcare and medi-
cal facilities. This may be due to people waiting to see doctors.
However, only few of our participants visited healthcare re-
lated places. In addition, we found that the people were less
interruptible when at shopping and at work in contrast to places
associated to entertainment.

We found that the relation between interrupters and inter-
ruptees plays an important role in estimating interruptibility.
People were more interruptible when they would be inter-
rupted by immediate family members or other people they
know well and see frequently. Conversely, participants were
reluctant to be interrupted by people they were not familiar
with. This finding complements that disruption perception

varies with senders of notifications [55]. Also, it comple-
ments previous findings that users are unlikely to click the
notifications from distant senders [54] and notifications from
immediate family members are more acceptable [19]. Partici-
pants were more interruptible when they were interrupted by
shorter tasks than longer tasks.

We found that people’s interruptibility differed when they
were involving in different activities. For example, we found
that participants were reluctant to be interrupted when they
were studying. Compared to other activities, they were less
interruptible when they were exercising. This dovetails well
with previous findings that ongoing task type is associated
with the perceived disruption [55].

LIMITATIONS
One limitation of EMA is that participants respond and self-
report their availability and type of contents they are interested
in. Participants can only see the interruption content when
opening the app. Thus, our model may miss the contextual
information embodied in the notifications that could be used
in the first stage. Our model uses particular content (a sur-
vey) and may not necessarily generalize to other types of
content. However, our results have shown the effectiveness of
our two-stage model. Our approach could be applied to actual
notifications with all types of different content.

Another limitation is that we classified all the non-responded
EMA prompts as uninterruptible in the first stage. When users
did not answer the survey, we cannot separate the situations
whether they were available but ignored them intentionally or
they were completely uninterruptible. One possible improve-
ment for further studies is to make the first stage a ternary
classification (unavailable, available but do not want to answer
the survey, and completely available).

CONCLUSIONS
We developed a novel hierarchical model to predict interrupt-
ibility and its intensity. Our work highlights the importance
of predicting interruptibility in different levels. Our model
can achieve an accuracy of 66.1% (60.9% on average) for pre-
dicting interruptibility intensity, and 75% for first-stage binary
interruptibility classification. In addition, we have presented
the importance of personality traits in predicting people’s busy-
ness. Our work is the first to employ personality traits with
predicting interruptibility. Our approach solves the important
problem of initial prediction when the individual prediction
model has not yet trained on user’s data. This approach can be
applied to various applications and platforms.
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